Translation invariant maps on function spaces over locally compact groups
نویسندگان
چکیده
منابع مشابه
Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملTranslation-invariant Function Algebras on Compact Groups
Let X be a compact group. $(X) denotes the Banach algebra (point multiplication, sup norm) of continuous complexvalued functions on X A is any closed subalgebra of d(X) which is stable under right and left translations and contains the constants. It is shown, by means of the Peter-Weyl Theorem and some multilinear algebra, that the condition (*) every representation of degree 1 of X has finite ...
متن کاملThe Structure of Translation-invariant Spaces on Locally Compact Abelian Groups
Let Γ be a closed co-compact subgroup of a second countable locally compact abelian (LCA) group G. In this paper we study translation-invariant (TI) subspaces of L(G) by elements of Γ. We characterize such spaces in terms of range functions extending the results from the Euclidean and LCA setting. The main innovation of this paper, which contrasts with earlier works, is that we do not require t...
متن کاملA Range Function Approach to Shift-Invariant Spaces on Locally Compact Abelian Groups
This paper develops several aspects of shift-invariant spaces on locally compact abelian groups. For a second countable locally compact abelian group G we prove a useful Hilbert space isomorphism, introduce range functions and give a characterization of shift-invariant subspaces of L 2 (G) in terms of range functions. Utilizing these functions, we generalize characterizations of frames and Ries...
متن کاملAbstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2019
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2018.10.033